Total No.

(

of Printed Pages—8

4 SEM FYUGP MTHC4C

2025

( June )

MATHEMATICS
{*Core’}
Paper : MTHC4C
Ring Theory and Linear Algebra I )

Full Marks : 60

Time : 2 hours

The figures in the margin indicate full marks

1. (a)

(b)

()

P25/1394

for the questions

R Wbre 9T g fua | 1

Define unity in a ring.
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Give an example of a subset of a ring that

is a subgroup under addition but not a
subring.
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Prove that a finite integral domain is a
field.
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Define characteristic of a ring. Let Rbe a
ring with unity 1. Prove that if 1 has
infinite order under addition, then the
characteristic of Ris 0 and if 1 has order
nunder addition, then the characteristic
of Ris n.
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Define Prime Ideal and Maximal Ideal.
Let R be a commutative ring with unity
and let A be an ideal of R. Then prove
that R/A is an integral domain if and
only if A is prime.
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“Let R be a commutative ring of
characteristic 2. Then the mapping
a — a? is not a ring homomorphism from
R to R.” State True or False.
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Let R be a ring with unity 1. Prove that
the mapping f: Z 5> Rgivenbyn—-n. 1l
is a ring homomorphism:
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Determine all ring homomorphisms from
Z®Z to Z.
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Let D be an integral domain. Then prove

that there exists a field F that contains a
subring isomorphic to D.
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Let R be a ring with unity and let ¢ be a
ring homomorphism from R onto Swhere

S has more than one element. Prove that
S has a unity.
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If R is a ring with unity and the
characteristic of R is n >0, then prove
that R contains a subring isomorphic to
Z, and if the characteristic of R is O,
then R contains a subring isomorphic
to Z.
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If Fis a field of characteristic p, then F
contains a subfield isomorphic to Z - LF
is a field of characteristic 0, then show
that F contains a subfield isomorphic to
the rational numbers.
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Let n be an integer with decimal
representation, a, ;. _;-+-a;a,. Prove that
n is divisible by 11 if and only if
ag —a +a, —-(-1)*a, is divisible by 11.
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If Sis a linearly dependent set of vectors,
prove that one of the vectors in S is a
linear combination of thée others.
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If Vis a vector space over F of dimension

5 and U and W are subspaces of V of
dimension 3, prove that Un W # {O}.
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Prove that each set of (n+1) or more
vectors of a finite-dimensional vector

space V over F dimension n is linearly
dependent.
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If {uy, uy, -, u,} and {w,;, wy,---,w, } are
both bases of a vector space Vover a field
F, then prove that m = n.
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If Uis a proper subspace of a finite-
dimensional vector space V, show that

the dimension of U is less, than the
dimension of V.
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Define identity and zero transformations
for the vector spaces Vand Wover F.
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Define linear transformation of a vector
space. Show that the mapping
T:(a b) > (@+2, b+3) of V over R? into

itself is not a linear transformation.
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Let Tbe alinear transformation from Vto

W. Prove that the image of Vunder Tis a
subspace of W.
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Let T be a linear transformation of a
vector space V. Prove that
{veV|T() =0}, the Kernel ©of T, is a
subspace of V.
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nullity (7) + rank (T) = dim (V)

Let V and W be vector spaces, and let
T:V—>W be linear. If V is (finite-
dimensional then prove that

nullity (T) + rank (T) = dim (V)
931/ Or
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Let V and W be vector spaces and
T:V— W be linear. Prove that T is
one-one if and only if T carries linearly

independent subsets of V onto linearly
independent subsets of W.

( Turn Over }



(8)

(e) [ 28 B HF y ¥ R?2 ¢ R337 @

e T9E e | (o8 T: R2 5 RS 0
T(a, ay) = (a, -ay, 3a; +4a,, @)

7 RWRS (IRF F9%9 T: R?2 - R33 @

G Tomrom =0 | : 5
Let B and y be the standard ordered
bases for R? and R respectively, then
for the linear transformation T: R? — R3

defined by
T, a) =2a, -ay, 3a; +4a,, a)
compute the matrix representation.
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Let Vand W be vector spaces over a field
F, and let T, U: V — W be linear. Prove
that

() ¢ ae F,aT + U3 @ @RS,
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the collection of all linear
transformations from V to W is a
vector space over F.
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