6 SEM TDC DSE MTH (CBCS) 2 (H)

2022

(June/July)

MATHEMATICS

(Discipline Specific Elective)

(For Honours)

Paper: DSE-2

(Linear Programming)

Full Marks: 80 Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1.	(a)	programming problem.	1
	(b)	Write the conditions of optimality of basic feasible solution.	2
	(c)	Define slack and surplus variables of a linear programming problem.	1

ł

(d) Write the computational procedure of simplex method to solve an LPP.

4

(e) Show that the feasible solution $x_1 = 1$, $x_2 = 0$, $x_3 = 1$, z = 6 to the system

$$x_1 + x_2 + x_3 = 2$$

 $x_1 - x_2 + x_3 = 0$
 $2x_1 + 3x_2 + 4x_3 = Z \text{ (min)}$

is not basic.

3

(f) Solve the following LPP by simplex method:

5

 $\max Z = 3x_1 + 2x_2$
subject to

$$2x_1 + x_2 \le 5$$
$$x_1 + x_2 \le 3$$

and $x_1, x_2 \ge 0$

(g) Solve the following LPP by two-phase method:

7

 $\begin{array}{ll}
\text{Min } Z = 5x_1 + 8x_2 \\
\text{subject to}
\end{array}$

$$3x_1 + 2x_2 \ge 3$$

$$x_1 + 4x_2 \ge 4$$

$$x_1 + x_2 \le 5$$

and $x_1, x_2 \ge 0$

Or

Solve the following LP problem by Big-M method:

Max
$$Z = 2x_1 + 4x_2$$

subject to
 $2x_1 + x_2 \le 18$
 $3x_1 + 2x_2 \ge 30$
 $x_1 + 2x_2 = 26$
and $x_1, x_2 \ge 0$

- (h) Write the advantages of two-phase method over Big-M method.
- 2. (a) What do you mean by the standard form of a primal problem?
 - (b) Write the three types of primal-dual problem.
 - (c) Write down the economic interpretation of dual problem.
 - (d) Write the dual of the following primal LP problem:

Minimize $Z = x_1 + 2x_2$ subject to the constraints

$$2x_1 + 4x_2 \le 160$$

$$x_1 - x_2 = 30$$

$$x_1 \ge 10$$

$$x_1, x_2 \ge 0$$

and

2

3

(4)

- Prove that dual of the dual is the primal (e) itself.
- 3. (a) What do you mean by balanced transportation problem?
- 1
- Write a short note on any one of the (b) following:
 - (i) North-West corner method
 - (ii) Least-cost method
- (c) Obtain an initial **BFS** to the transportation problem given below using Vogel approximation method:

Destination

1		- 5568 6221071				
		D_1	D_2	D_3	Supply	
	s_{l}	21	16	15	11	
Source	S_2	17	18	14	13	
	S_3	32	27	18	19	
	Demand	6	6	8		
					1 3	

- - What is an assignment problem? Write (d) the mathematical formulation of an assignment problem. 1+2=3
 - A department of a company has five employees with five jobs performed. The time (in hours) that each

man takes to perform each job is given in the effectiveness matrix :

Employees

		I	П	, 111	IV	v
	A	10	5	13	15	16
	В	3	9	18	13	6
Jobs	С	10	7	2	2	2
	D	7	11	9	7	12
	E	7	9	10	4	12

How should the jobs be allocated (one per employee) so as to minimize the total man-hours?

Or

Solve the assignment problem:

Operators

	I	11	Ш	IV
Α	10	12	9	11
В	5	10	7	8
C	12	14	13	11
	8	15	11	9
D		l		

- **4.** (a) Write a short note on characteristics of game theory.
 - (b) What do you mean by zero-sum game?

1

2

6

22P/899

(Turn Over)

- (c) Write the assumptions made in the theory of games.
 - Write a short note on any one of the following:
 - following:
 (i) Pay-off matrix

(d)

- (ii) Maximin principle
- (iii) Optimal strategy
- (e) For the game with the following pay-off matrix

Player B $\begin{array}{c|ccccc}
 & B_1 & B_2 & B_3 \\
\hline
Player A & A_1 & -1 & 2 & -2 \\
\hline
A_2 & 6 & 4 & -6
\end{array}$

determine the value of the game. Is the game fair?

(f) Use graphical method for solving the following game and find the value of the game:

		Player B			
	$A_{\rm h}$	$\frac{B_1}{C}$	B_2	B ₃	B_4
Player A	1	2	2	3	-2
	A_2	4	3	2	6

22P**/899**

(Continued)

5

8

Or

For the following pay-off matrix, transform the zero-sum game into an equivalent LPP and solve it by using the simplex method:

	Player B			
	$B_{\mathbf{l}}$	B_2	<i>B</i> ₃	
A_1	1	-1	3	
A_2	3	5	-3	
	6	2	-2	
	A ₁ A ₂ A ₃	$ \begin{array}{c c} B_1 \\ A_1 & 1 \\ A_2 & 3 \end{array} $	$egin{array}{c cccc} B_1 & B_2 & & & \\ A_1 & 1 & -1 & & \\ A_2 & 3 & 5 & & \\ \hline & & & & & 2 \\ \hline \end{array}$	

 $\star\star\star$