4 SEM TDC MTMH (CBCS) C 9

2022

(June/July)

MATHEMATICS

(Core)

Paper: C-9

(Riemann Integration and Series of Functions)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. (a) State two partitions of the interval [1, 2] such that one is a refinement of the other.
 - (b) Consider the function f(x) = x on [0, 1] and the partitions

$$P = \{x_i = \frac{i}{4}, i = 0, 1, 2, 3, 4\}$$

$$Q = \{x_j = \frac{j}{4}, j = 0, 1, 2, 3, 4, 5, 6\}$$

Determine the lower sums and upper sums of f with respect to P and Q. State the relations between L(f, P) and L(f, Q); U(f, P) and U(f, Q).

4

1

Or

For a bounded function f on [a, b] with its bounds m and M, show that $m(b-a) \le L(f, P) \le U(f, P) \le M(b-a)$ for any partition P of [a, b].

- 2. (a) Define a tagged portion of a closed interval. Define Riemann sum of a bounded function. 1+1=2
 - (b) Let $f:[a,b] \to \mathbb{R}$ be integrable. Then show that

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

- (c) Answer any four questions from the following: 5×4=20
 - (i) Let $f:[a, b] \to \mathbb{R}$ be bounded and monotonic. Then show that f is integrable.
 - (ii) Let $f:[a, b] \to \mathbb{R}$ be continuous. Then show that f is integrable.
 - (iii) Let $f:[a, b] \to \mathbb{R}$ be integrable. Define F on [a, b] as $F(x) = \int_a^x f(t)dt$; $x \in [a, b]$. Show that F is continuous on [a, b].
 - (iv) Let f be continuous on [a, b]. Show that there exists $c \in [a, b]$ such that

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = f(c)$$

		(v) Show that if $f:[a,b] \to \mathbb{R}$ is		
		integrable, then $ f $ is integrable on		
		[a h]		
		(vi) Let $f:[a, b] \to \mathbb{R}$ be Riemann		
		integrable. Then show that f is		
		bounded on [a, b].		
		HUMBELL CONTROL Many Many Town St. and John St.		
3.	(a)	Discuss the convergence of $\int_{1}^{\infty} \frac{dx}{x^{p}}$ for		
		with the same and vimplical	3	
		various values of p.	J	
	(b)	Attempt any one:		
		Show that—		
		(i) $B(m, n) = B(n, m)$	2	
		(ii) $\Gamma(m+1) = \underline{m}; m \in \mathbb{N}$	3	
	(c)	Show that $\int_0^\infty x^{n-1}e^{-x}dx$ exists.	4	
	Look	5. (a) Define supposes serios around in		
4.	(a)	Define pointwise convergence of		
-1	(4)	sequence of functions.	1	
	(b)	Define uniform convergence of sequence		
	(D)	of functions.	2	
	(0)	State and prove Weierstrass M-test for		
	(c)	the series of functions.	4	
	(4)	Q level oritorion for		
	(d)	uniform convergence of a series of		
		functions.	4	
		Or		
		Let $f_n:J\subseteq\mathbb{R}\to\mathbb{R}$ converge uniformly on		
		J to f. Let $f_n \forall n$ is continuous at $a \in J$.		
		Then show that f is continuous at a .		
			ion	
22P/1275 (Turn Over				

(Turn Over)

(e)	Let $\{f_n\}$ be a sequence of continuous
	functions on [a, b] and $f_n \to f$ uniformly
	on [a, b]. Show that f is continuous and
	therefore integrable. Establish that
	$\int_{a}^{b} f(x)dx = \lim_{a} \int_{a}^{b} f_{n}(x)dx$
(f)	Let $f_n:(a, b)\to\mathbb{R}$ be differentiable. Let
	there exist functions f and g defined on
	(a, b) such that $f_n \to f$ and $f' \to a$

(a, b) such that $f_n \to f$ and $f'_n \to g$ uniformly on (a, b). Show that f is differentiable and f' = g on (a, b).

(g) Consider the function $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = \frac{\sin nx}{x}$. Show that (f_n)

converges pointwise and uniformly to the zero function.

5

5

4

4

5

- 5. (a) Define a power series around a real number c. Give an example of power series around the origin.

 1+1=2
 - (b) Define radius of convergence of a power series. Show that the radius of convergence R of a power series $\sum a_n x^n$

is given by
$$\frac{1}{R} = \lim \left| \frac{a_{n+1}}{a_n} \right|$$
.

- (c) State and prove Cauchy-Hadamard theorem.
- (d) Show that if the series $\sum a_n$ converges, then the power series $\sum a_n x^n$ converges uniformly on [0, 1].
